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Preface

Whether you have already purchased this book or
are still contemplating buying it, we hope you will
take some time reading this preface so that you can
understand why this book was written and how to
get the most out of it.

The Purpose of this Book

The authors have spent many years supporting
students with the mathematical demands of
undergraduate and postgraduate courses in the
biosciences. We believe that you will benefit from
our experience and the immense effort that we have
poured into this book so that you become successful
in both your degree course and future career.

Content

This book consists of twelve chapters and each
chapter is divided into two sections. It is designed
to allow you progress in a logical manner from sets
of easier, fundamental problems to much more
demanding and complex calculations aligned to
various disciplines in biology.

In the first five chapters we cover the essential
ground rules to enable a smooth transition into the
later chapters. We begin with thearithmeticoperations
in mathematics in Chapter 1, giving emphasis to the
use of equations and indices. In Chapter 2 we move
on to fractions and here you will also learn about
the rounding of numbers and scientific notation.
Chapter 3 introduces the SI units of measurement
and rules for their use and conversions between

viii

different units. Ratios and percentages are discussed
in Chapter 4, providing examples of calculations
encountered when preparing mixtures and solutions
with a given percentage concentration. Chapter 5 is
dedicated to logarithms, giving clear explanations
of the laws of logarithms and the application of
logarithms in the biosciences.

In Chapter 6 you will learn about preparing
molar solutions and both standard and serial
dilutions. We know this is a problem area for many
students, hence our decision to devote a whole
chapter to these topics.

Chapters 7-10 present calculations relevant to the
specialisms in biosciences. Each chapter provides a
brief overview of some of the theoretical concepts
of each topic before working through typical
calculations. Chapter 7 covers measurements made
in microscopy, cell biology and microbiology as
well as calculations of selected physiological and
pharmacological parameters. Chapter 8 focuses on
calculations relating to a range of techniques used
in analytical biology and radiobiology. Chapter 9
contains examples of solutions to problems in
DNA and protein analysis, whilst Chapter 10 is
devoted to enzyme kinetics, including analysis of
enzyme inhibition.

In Chapter 11 you are introduced to statistics
and will conduct some statistical analysis. Chapter 12
demonstrates how to present data correctly in
graphs and charts as well as explore relationships
between variables using correlation and regression
analysis.



Preface

Key Features

® Learning Outcomes

A summary is provided at the start of each
chapter of the learning outcomes expected to be
achieved once the chapter has been completed.
This will help you keep track of what you have
learnt.

Worked Examples

Throughout the book there are numerous
worked examples with detailed solutions and
explanations, taking you step by step through
each calculation.

SELF-ASSESSMENT

There are also calculations for you to attempt
independently, then check against the answer key
at the end of the book. This will help you check
your understanding and increase confidence as
problems become progressively more difficult.

MyMathLabGlobal

This book is available with access to the online
resource, MyMathLabGlobal, but requires that
a course ID has been set up by your tutor for
you to use it. This e-resource provides an
extensive bank of exercises developed by the
authors to provide the opportunity for further

self-assessment (examples of these questions
are listed at the end of each half chapter of
the book). MyMathLabGlobal will guide you
through each step in solving a problem until the
fully worked correct answer is displayed. Your
tutor has the option to set up homework, quizzes
and tests.

Key Terms

Key terms are defined in each chapter and these
are highlighted in coloured text where they are
explained. A list of key terms is also given at the
end of the chapter, indicating those which may
appear as a key term in other chapters of the
book. Reviewing the key terms once a chapter is
completed will ensure you fully understand each
concept and are ready to progress further.

In the event that Pearson invite us to produce
a second edition, we would like to hear your
suggestions on any improvements or additional
material that could be included. We can be
contacted at: mathsforbiosciences@gmail.com.

Thank you for purchasing this book, we hope you
will enjoy using it.

Ela Bryson
Jackie Willis


mathsforbiosciences@gmail.com

Guided tour

Learning outcomes
Learning outcomes are listed at the start of each chapter
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MyMathLabGlobal

The MyMathLabGlobal resource (where made available
by your tutor) enables you to learn by solving problems
online. Italso allows tutors to set online tests.

Key terms
Key terms are defined and clearly highlighted in the text.
To aid revision, there is a list at the end of each chapter.
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1 Basic arithmetic skills

When you have completed this chapter, you should be able to:

® solve mathematical problems using appropriate operations and apply the principles of BODMAS
e rearrange and solve equations

e apply the laws of indices

e carry out calculations using a scientific calculator and provide your own estimate of the answer.

1.1 Elementary arithmetic calculations in biology

1.1.1 Introduction

Whether working in the laboratory or out in the field, biologists need to use elementary arithmetic
skills. In this section, we will consider the fundamental rules of arithmetic and then apply these to some
examples of basic calculations in biology. You should already be familiar with the operations used in
this chapter, but you may find it useful to refer to Appendix 1 which provides a brief description of
arithmetic operations and their symbols.

The information collected during biological investigations consists of a series of observations,
referred to as the data (plural), where each individual observation is the datum (singular). Although
data may be qualitative (such as the colour of fungal colonies growing on media), more frequently
data are quantitative (such as the number of fungal colonies counted on a plate). Quantitative data can
be expressed as fractions (e.g. %), percentages (50 %) or decimal numbers (0.5). However, some data
are in the form of whole numbers. Whole numbers are referred to as integers. Integers are described
as discrete data because they are whole numbers that have other numbers lying in between them. In
this chapter we will be using integers.

1.1.2 Basic operations

Operations are the processes used to perform mathematical calculations. These include four basic
operations: addition, subtraction, multiplication and division but there are many more (e.g. percentages,
powers) that will be covered in later chapters. We will work through a couple of problems to remind you
of how basic operations are used.

& Worked example 1.1.1

In an investigation about the germination of cress seeds, a plant biologist wants to summarise
the quantitative data collected about the germination of the seeds in a sample of 7 pots
(Fig. 1.1.1).

Figure 1.1.1 Germinated cress seeds.
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Five hundred seeds were sown in each pot and after 2 weeks the number of seeds that germi-
nated was counted:

Pot 1 326
Pot 2 402
Pot 3 397
Pot 4 420
Pot 5 381
Pot 6 368
Pot 7 352

Solution
In order to calculate the total number of seeds that have germinated, we must add the number that
germinated in each pot:

326 + 402 + 397 + 420 + 381 + 368 + 352 = 2646

In maths, the total is also referred to as the sum — the result of adding two or more numbers together.
The investigator also needs to know how many seeds did not germinate in each pot. This can be cal-
culated by subtracting the number that germinated from the number of seeds planted:

Pot 1 500 — 326 = 174
Pot 2 500 — 402 = 98

Pot 3 500 — 397 = 103
Pot 4 500 — 420 = 80

Pot 5 500 — 381 = 119
Pot 6 500 — 368 = 132
Pot 7 500 — 352 = 148

The number of seeds that failed to germinate is:
174 + 98 + 103 + 80 + 119 + 132 + 148 = 854

However, this is a very inefficient way of determining how many seeds did not germinate. As the same
number of seeds was sown in each pot, by using multiplication we can easily calculate that the total
number of seeds planted in seven pots was:

500 X 7 = 3500

We can then calculate the number of seeds that did not germinate as the difference between the total
number of seeds planted and the total number of seeds which germinated:

3500 — 2646 = 854

If the investigator wanted to express in general terms how many seeds per pot germinated, this can be
determined by dividing the total number of seeds that germinated by the number of pots:

2646
—— =378
7
378 represents the average, or arithmetic mean, and these two terms are often used interchangeably.

The arithmetic mean (usually just called the mean) represents the typical value within a set of numbers.
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We can see that in Pot 4, 420 seeds germinated which is above average, whilst in Pot 1, 326 seeds germi-
nated which is below average. In this example, the mean was calculated using the following general rule:

mean = sum of observations in the set ~ number of observations in the set

We can think of this as being a word equation because it shows how to perform the calculation. In
maths, we use symbols in equations to represent the operations used to process a calculation. In our
word equation, the sum can be represented by the symbol X (capital Greek letter sigma, meaning
the sum of) and each observation by x;. The number of observations is generally referred to as n and the
symbol for the sample mean is X. Using mathematical symbols, the word equation can be rewritten as:

i

n

X =

You will learn more about the arithmetic mean in Section 11.1. Throughout this book there are
equations which include symbols representing quantities and mathematical operations. As quantity
symbols are generally single letters of the Latin or Greek alphabet, you may find it useful to familiarise
yourself with other commonly used Greek letters which are listed in Appendix 1.

& Worked example 1.1.2

In the laboratory, toxicological testing is frequently performed by exposing cells to a test
substance to determine whether it causes the cells to die. As this testing is performed on a
large scale, cellular suspensions are pipetted into small wells on a plate. These are known as
multi-well plates, as shown in Fig. 1.1.2.

Figure 1.1.2 Multi-well plate.

How many wells are there on the plate? If the laboratory is contracted to perform 960 047 tests,
how many multi-well plates will be required? Notice that the digits of the number 960 047 are
grouped into groups of three separated by thin spaces to make reading it easier. This is custom-
ary in the internationally used SI system (we will be looking at this system in detail in Chapter 3).
In this book such grouping of digits will generally be used for numbers with six or more digits.
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Solution
The easiest way to calculate this is to count the number of wells in each row (12) and column (8) and
then multiply them:

8 X 12 =96

To calculate how many 96-well plates will be required for 960 047 tests, we need to divide 960 047 by 96
(960 047 + 96) which gives us 10000 and a remainder of 47. This means we are able to fill 10000 plates
to test 960 000 samples but then a further plate is required for the remaining 47 samples. In the last plate,
49 wells will remain empty (96 — 47 = 49). In total, 10001 plates are needed. If you were to perform
this calculation using a calculator, your answer would be 10000.48958, which is a decimal number.

1.1.3 Estimation

There are many situations in our everyday lives where we need to make an estimate instead of obtaining
a precise answer. The problem below gives a good example of where we use estimation, which means we
do not attempt to find the precise number but make a calculated guess that is near to the right answer.

& Worked example 1.1.3

A biologist wants to conduct a study using bean plants and needs to decide how many plants
to buy. They have 10 rows and each row is 72 cm in length. If the plants need to be spaced
7 cm apart in the row, how many plants should the biologist purchase?

Solution

The first step in solving this problem is to estimate how many plants can be placed in each row.
If 72 cm is rounded down to 70 cm for the length of the row, then we can say that approximately
70/7 = 10 plants can be placed in each row.

As there are 10 rows, then 10 X 10 = 100 plants are required.

SELF-ASSESSMENT

1.1.1  Soil samples are prepared for drying in are required. How many vials does
an oven so that the moisture content can the laboratory use in total during all
be measured by comparing the weight of 52 weeks?
the 05011 before and afte1.r drying. It takes 113 A student planning their research project
a biology student 20 minutes to prepare has some samples that will be analysed
and We1gh a batch of S samples. After using a spectrophotometer. The student
spending 3 hours preparing samples, the needs to book the equipment, so they
student places them in the oven together must estimate how long to make the
with 6 samples that had been prepared booking for. It takes 1 minute 29 seconds
the previous day. How many samples will for them to take readings for each
there be in the oven? sample and 20 seconds to change the

1.1.2 A laboratory uses 4 vials per week of sample. Estimate the length of time (in

an enzyme for 52 weeks except for
5 weeks when some of the staff are
on holiday and only 3 vials per week

minutes) for which the student needs to
book the spectrophotometer to carry out
measurements for 30 samples.
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MyMathLabGlobal

1.1.1

A lab needs to run toxicology tests using
multi-well plates that hold 96 samples
each. How many multi-well plates will

drug that is 8 mg for every kilogram of their
body weight. Calculate the dose of drug for
subjects with the following weights:

the lab need for testing 289 150 samples? (2) 56kg

1.1.2 A lab needs to order multi-well plates (b) 75kg
for conducting tests on 688540 sam-

(¢c) 86kg

ples. Each multi-well plate will hold 96

samples. The supplier provides the plates 1.1.7 You need to analyse 103 samples by elec-
in packs of 10. Calculate how many packs trophoresis using gels with 12 wells. In
the lab will need to order. addition to your samples, you have to
1.1.3  An assay to obtain a standard curve will include molecular mass markers that will
be conducted in triplicate and there will occupy one lane in each gel. How many
be nine standards with different concen- gels do you need to run in total?
trations used. How many test tubes will 1.1.8 An enzyme assay uses 4 pL of enzyme
be needed for this assay? solution. How many assays can you
1.1.4 How much buffer do you add to 10 uL of perform with the total of 720 pL of the
enzyme and 50 pL of substrate to obtain enzyme solution, assuming no losses for
an enzymatic reaction mix with the total pipetting?
volume of 1200 wL? 1.1.9 A laboratory uses 7 bottles of dis-
1.1.5 Amixture of three different solvents (chloro- tilled water every week of the year except
form, ether and acetone) is prepared. A for 9 weeks during the summer when
volume of 225 mL of chloroform is placed its usage of distilled water is reduced to
in a beaker, together with 373 mL of ether. 5 bottles a week. How many bottles a
How much acetone must be added for the year does the lab use?
final volume of the solution to be 800 mL? 1.1.10 A test tube rack can hold 24 test tubes.

An experimental subject in a pharma-
cological study must be given a dose of

How many racks do you need to store
165 test tubes?

1.2 Indices, BODMAS and use of equations

1.2.1 Indices

Sometimes there are situations in which a number is multiplied by itself, e.g. 2 X 2. Another way of
representing this would be as 2> which we commonly say is 2 squared or 2 raised to the power of 2. A
similar example is 2 X 2 X 2 which can be presented as 2°, 2 raised to the power of 3, or 2 cubed. If
we were to generalise, then this could be written as:

al’l

where a is the base and 7 is the index or power. The index represents the number of times that a should
be multiplied by itself. The index is also sometimes referred to as the exponent or order. So a”, where
n = 4, would be written as:
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which is the same asa X a X a X a.
(Note that the plural of ‘index’ is ‘indices’.)
Any base raised to the power of 1 is equal to the base:

alza

For example: 7' = 7

Laws of indices If numbers containing different bases are to be added, subtracted, multiplied or
divided, their values must be calculated separately before calculating the sum, difference, product or

quotient, respectively. This is illustrated in the next worked example.

& Worked example 1.2.1
Evaluate:

(a) 23 + 42
(b) 33 — 24
(c) 23 x 5!
(d) 2° + 42
Solution

(a) We need to calculate the values of 2* and 4? before carrying out the addition as the bases are
different.
22=2x2x2=38
4 =4x4=16
So2’ +42=8 + 16 =24

(b) We need to calculate the values of 3* and 2* before carrying out the subtraction as the bases are

different.
3¥ =27
2% =16

P —24=27-16=11

(c) We need to calculate the values of 2° and 5! before carrying out the multiplication as the bases
are different.
2=38
st=5
2P x5'=8x5=40
(d) We need to calculate the values of 2° and 4> before carrying out the division as the bases are
different.
20 = 64
4 =16
X+ 4=64+16=4
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However, when calculations involve numbers with the same base, we can apply laws of indices.

First law of indices To multiply numbers that contain the same base, we add the indices:

a"X d"= am+n

& Worked example 1.2.2
Evaluate 2° x 22

Solution
Px2=2"=2 =3

We can see that this is indeed the case when we write each term fully:

P =2x%x2x2
2 =2x%2
So:

X222 =2X2X2X2X2=2 =32

Second law of indices To divide numbers that contain the same base, we subtract the indices:

aﬂ'[
al’l

— am—n

& Worked example 1.2.3

3
Evaluate 2—2
2

Solution
2:?4=T:2
22

We can show that this is the case when we write each term fully:

22 2XxX2Xx2

— 2
b2 2 X2

Third law of indices When we have a number raised to a power that is raised to a further power,
we multiply the powers:

(am)n — am><n
& Worked example 1.2.4

Evaluate (22)3.

Solution
(22)3 — 22><3 — 26 = 64
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We can see that this is the case when we write this expression fully:
(2P =2X 2 X2 =2X2X2X2X2x2=2 =64

In the same way as there are positive and negative integers, there are both positive and negative
indices. So far we have only considered examples where the index is positive. When it is zero, the
fourth law of indices applies and when it is negative, the fifth law applies.

Fourth law of indices Any number raised to the power of 0 is equal to 1:

@ =1

& Worked example 1.2.5
Show that 2° = 1.

Solution
We could write:

20 = pnn

where n is any integer (because n — n = 0).

Using the second law of indices, we can express the right-hand side of the equation as:
211

o — =

2}’!

This is equal to 1 as any number divided by itself is equal to 1.
So we have shown that 2° = 1.

Fifth law of indices A number raised to a negative power is equal to 1 divided by this number
raised to the positive power with the same absolute value:

]
a = —
a’

where m > 0.

& Worked example 1.2.6
Evaluate 273.

Solution
1 1
273 = — = —
2% 8
We can show that this is the case when we write:
2—3 — 20—3
Applying the second law of indices we have:
20

0-3 —
2 =53



Chapter 1 - Basic arithmetic skills

Since 2° = 1, then:

20 1
2 3
So we have shown that:
1
-3 _
S

Sixth law of indices This law refers to fractional powers called roots.
a'"m = /a
For example:
a> = Va (square root)
3
a'® = NVa  (cuberoot)

@ Worked example 1.2.7
Evaluate 42 and 8'/3.

Solution
412 = \/4

Square root of 4 has two values: 2 and —2, because both numbers squared give 4:
22 =4and (-2)?=-2X (-2) =4

813 =g =2

The cube root of 8 has only one value as:

23 =8and (—2)° = -2 X (=2) X (=2) = -8

1.2.2 BODMAS

When a complex calculation has several steps, it is important to give priority to the parts of the
calculation that need to be completed first, otherwise an incorrect answer may be produced. For
example, let us calculate the value of the following expression:

3X5-1

If the multiplication is performed first, then this would give 15 — 1 = 14.
However, if the subtraction is (incorrectly) performed first this would give 3 X 4 = 12,
In maths, there is an established protocol for the sequence in which operations are performed in
calculations. This is usually abbreviated as BODMAS which stands for:
B Brackets first
(0] Order refers to powers
DM Division and Multiplication
AS Addition and Subtraction



